11. Display the minimum and maximum Total_Amount for each product.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
12. Retrieve orders where Total_Amount is within 10% of the highest order amount.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
13. Identify customers who ordered every available product at least once.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
14. List orders where the Total_Amount exceeds the average order amount for that customer.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
15. Display customers whose orders cover all products in the Electronics category.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
16. Show the 3 most recent orders for each product.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
17. Calculate the difference in Total_Amount between consecutive orders for each customer.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
18. Retrieve the average Total_Amount for each customer, only including orders with more than 1 quantity.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
19. Find customers who made consecutive orders within 3 days of each other.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output
20. Display customers with a running total of the Total_Amount across all their orders.
Code In Sql
-- Table Name : Orders
-- | Order_ID | Customer_Name | Product | Quantity | Order_Date | Total_Amount | CATEGORY |
-- |----------|---------------|---------------|----------|------------|--------------|--------------|
-- | 101 | Ananya | Laptop | 1 | 2023-06-15 | 55000.00 | Electronics |
-- | 102 | Bharat | Mobile Phone | 2 | 2023-06-18 | 60000.00 | Electronics |
-- | 103 | Chitra | Office Chair | 4 | 2023-07-01 | 28000.00 | Furniture |
-- | 104 | Dev | Coffee Maker | 1 | 2023-07-04 | 4000.00 | Furniture |
-- | 105 | Esha | Dining Table | 1 | 2023-07-10 | 15000.00 | Furniture |
-- | 106 | Ananya | Headphones | 1 | 2023-06-16 | 2000.00 | Electronics |
-- | 107 | Bharat | Charger | 1 | 2023-06-20 | 500.00 | Electronics |
-- | 108 | Harsh | Headphones | 1 | 2023-07-16 | 2000.00 | Electronics |
-- | 109 | Ishita | Headphones | 2 | 2023-07-17 | 4000.00 | Electronics |
-- | 110 | Jai | Headphones | 2 | 2023-07-18 | 4000.00 | Electronics |
-- | 111 | Kavita | Headphones | 6 | 2023-07-19 | 12000.00 | Electronics |
-- Your Query Here
Output
Click Run Button to view compiled output